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4-trans-Amino-proline based di- and tetrapeptides as organic
catalysts for asymmetric C–C bond formation reactions
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Abstract—4-trans-Amino-proline based di- and tetrapeptides have been successfully applied as chiral organocatalysts in the enantio-
selective conjugate addition of nitroalkanes to cyclic enones and the direct aldol reaction. Two 4-trans-amino-proline residues were
shown to be sufficient enough to catalyze the conjugate addition reactions with up to 88% ee and up to 100% yield. It has been demon-
strated that 4-trans-amino-proline based di- and tetrapeptides are significantly more active than LL-proline (at 30 mol %) and can catalyze
the direct aldol reaction with good yield and enantioselectivity within 3 h and at lower catalyst loading (5 mol %).
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Short peptides and peptide-like molecules have recently
been found to be excellent asymmetric catalysts for a num-
ber of enantioselective organic transformations1–3 includ-
ing the acylation reactions,4–6 conjugate additions,7–10

hydrocyanation of aldehydes11 and imines,12–14 phosphor-
ylation,15 Baylis–Hillman,16 and direct aldol reactions.17–23

In our work directed toward enantioselective C–C bond
forming reactions, we have recently investigated, for the
first time, some LL-histidine based dipeptides as chiral
organocatalysts for asymmetric Michael additions9 and
aldol reactions.22

Recently, Hanessian et al.24,25 reported the catalytic asym-
metric conjugate addition of nitroalkanes to cyclic enones
in the presence of LL-proline as a catalyst and trans-2,5-
dimethylpiperazine as excess additive. Subsequently, we
demonstrated the potential of a 4-trans-amino-proline
based tripeptide as a chiral catalyst, in combination with
trans-2,5-dimethylpiperazine for asymmetric conjugate
addition of nitroalkanes to prochiral acceptors.10
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However, 4-trans-amino-proline based di- and tetrapep-
tides have never been examined for these reactions. This
prompted our present study. We were interested in explor-
ing whether there was a correlation between the amount of
catalytic centers (secondary amine functionalities) and the
catalytic activity of the oligo-a-amino acid.

Herein, we report an investigation of the potential of pep-
tides 1 and 2 (Fig. 1) as organic catalysts for the Michael
and aldol reactions, which are regarded to be among the
more synthetically important carbon–carbon bond forming
reactions.
2. Results and discussion

Chiral peptide catalysts 1 and 2 were successfully prepared
by classical methods already described in our previous
report.10 The catalytic efficiency of 1 and 2 was initially
examined on the enantioselective addition of nitroalkanes
to cyclic enones and the results are summarized in Table 1.

Using 1 (2 mol %) as a catalyst in the presence of trans-2,5-
dimethylpiperazine as an additive resulted in the formation
of Michael adducts 3–9 in 40–100% yields and 57–88% ee.
We found that the bulkiness of R1 and R2 in the nitroalk-
anes did effect the reactivities and enantioselectivities. The
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Figure 1.

Table 1. Conjugate addition of nitroalkanes to cyclohex-2-en-1-one and cyclopent-2-en-1-one catalyzed by peptides 1 and 2 (2 mol %) in the presence of
trans-2,5-dimethylpiperazine (100 mol %)

trans-2,5-Dimethylpiperazine

Peptide Catalyst
(2 mol%)

CHCl3, 5 d, rt
n = 1, 2

n

O
NO2

R1 R2

+

n

O

R2

R1
NO2

Nitroalkane Product Peptide 1 Peptide 2

Yielda (%) eeb (%) Yielda (%) eeb (%)

CH3NO2

O

NO2
3

75 57 75 55

CH3CH2NO2

O

NO24

100 LP: 66c 100 LP: 58c

MP: 67d MP: 59d

NO2

O

NO2
5

46 77 80 81

NO2

O

NO26
100 88 57 82

CH3CH2NO2

O

NO27

65 LP: 61c 71 LP: 47c

MP: 54d MP: 48d

(CH3)2CHNO2

O

NO2
8

40 76 50 64

NO2

O

NO29
64 77 41 60

a Isolated yields after column chromatography.
b % ee measured by 13C NMR of corresponding ketal with (2R,3R)-2,3-butane diol.
c % ee of less polar (LP) isomer.
d % ee of more polar (MP) isomer.
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larger the R1 and R2 (Me! Et! i-Pr! Cp), the higher
the enantioselectivity (Table 1, 3–6). These results can be
rationalized by the fact that during nucleophilic attack,
the enone forms an iminium ion intermediate26,27 with
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the peptide catalyst, thus impairing the approach of bulky
nucleophiles. The large nucleophile does react slowly, but is
more selective with the activated enone. The highest enantio-
selectivity (88% ee, product 6) was therefore observed for
nitrocyclopentane, while the lowest ones for nitromethane
(57% ee, product 3). Additionally, the ring size of the
enones also affected the enantioselectivity. Higher levels
of asymmetric induction were observed with cyclohexenone
(66–88% ee, products 4–6) compared to cyclopentenone
(54–77% ee, products 7–9).

Similar trends were observed for tetrapeptide catalyst 2
with respect to the enantioselectivities and yields when
varying the size of the cyclic enones and nitroalkanes
(Table 1).

With both peptide catalysts 1 and 2, approximately equi-
molar amounts of diastereomers for products 4 and 7 were
formed from nitroethane, respectively (Table 1).

Whereas similar results in terms of reaction rates were ob-
served with peptide catalysts 1 and 2, slightly higher enantio-
selectivities were obtained in the presence of dipeptide 1,
with respect to tetrapeptide 2. Maximum enantioselectivity
(88%) was achieved with as little as two 4-trans-amino-pro-
line residues (catalyst 1). These results demonstrate that in
the case of conjugate additions of nitroalkanes to cyclic
enones, there is no increase in catalytic activity or selec-
tivity with increasing chain length of the peptide catalyst.

Chiral catalysts 1 and 2 were also applied to the enantio-
selective aldol reaction of acetone and 4-nitrobenzalde-
hyde with the results are shown in Table 2. Initial
screening studies with dipeptide 1 identified DMSO as
the optimal solvent and +10 �C as the most suitable tem-
perature for the reaction (entries 1 and 2 vs entry 3).

Interestingly, peptides 1 and 2 in 15 and 5 mol % loading,
respectively, showed higher or similar yields (83% and
62%, entries 3 and 4) and approximately the same enantio-
selectivities (Table 2, 73% ee and 75% ee, entries 3 and 4) as
LL-proline (68%, 76% ee)28 at 30 mol %. This represents a
15% increase in yield compared to the LL-proline-catalyzed
reaction.

In these studies, the catalyst loading for the aldol reaction
was reduced from 30 mol %, as reported in the literature,28
Table 2. Asymmetric aldol reaction of acetone with 4-nitrobenzaldehyde cata

H

O
O

+

O2N

Peptid

Solv
10 11

Entry Peptide (mol %) Solvent T (�C)

1 1 (15) DMF �10
2 1 (15) DMF +10
3 1 (15) DMSO +10
4 2 (5) DMSO +10

a Enantioselectivities were determined by chiral HPLC analysis (Daicel Chiral
to 5 mol %. The observed reaction times decreased from
24–48 h (for LL-proline) to 3–4 h (for peptide catalysts 1
and 2).
3. Conclusion

In conclusion, 4-trans-amino-proline based di- and tetra-
peptides have been successfully applied as chiral catalysts
in the enantioselective conjugate addition of nitroalkanes
to cyclic enones. Two 4-trans-amino-proline residues were
shown to be sufficient enough to catalyze the conjugate
addition of nitroalkanes to cyclic enones with up to 88%
ee and up to 100% yield.

Although direct aldol reactions are well documented, we
have demonstrated for the first time that 4-trans-amino-
proline based di- and tetrapeptides can catalyze the aldol
reaction with good yields and enantioselectivities at
+10 �C within 3–4 h. These studies revealed that peptide
catalysts 1 and 2 are significantly more active than LL-pro-
line and allow us to reduce the catalyst loading from 30
to 5 mol %. In this respect, the use of oligo- and poly-a-
amino acids seems to be a research area with a great deal
of potential.
4. Experimental

4.1. General

All solvents were purified by standard procedures and dis-
tilled prior to use. Reagents obtained from commercial
sources were used without further purification. TLC chro-
matography was performed on precoated aluminum silica
gel SIL G/UV254 plates (Marcherey, Nagel Co.) or silica
gel 60-F254 precoated glass plates (Merck). 1H NMR spec-
tra were recorded with Varian Unity 300. ESI mass spectra
were measured with a LCQ Finnigan spectrometer. High-
resolution mass spectra were recorded with a Bruker
APEX IV 7T FT-ICR instrument. A Perkin–Elmer 241
polarimeter was used for optical rotation measurements.

4.2. Dipeptide 1

1H NMR (300 MHz, CD3OD) d 1.43 (s, 9H, C(CH3)3),
1.96–2.12 (m, 2H), 2.29–2.34 (m, 2H), 2.83 (dd, J = 4.5,
lyzed by peptides 1 and 2

OH O

(R)-12O2N

e Catalyst

ent

Reaction time (h) Yield (%) eea (%)

20 59 79
6 83 68
4 83 73
3 62 75

pak AS) in comparison with authentic racemic material.
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11.4 Hz, 1H), 3.09–3.23 (m, 2H), 3.49–3.55 (m, 1H), 3.82 (t,
J = 7.8 Hz, 1H), 4.00 (quin, J = 5.4 Hz, 1H), 4.14 (t,
J = 8.1 Hz, 1H), 4.36 (quin, J = 5.4 Hz, 1H). ESI-MS (po-
sitive ion): m/z = 343.1 [M+H]+, 684.9 [2M+H]+. HRMS
(ESI): calcd for C15H26N4O5 [M+H]+ 343.19760; found
343.19760.

4.3. Tetrapeptide 2

1H NMR (300 MHz, CD3OD) d 1.42 (s, 9H, C(CH3)3),
1.99–2.13 (m, 4H), 2.27–2.35 (m, 4H), 2.85–2.93 (m, 2H),
3.16–3.21 (m, 4H), 3.57–3.61 (m, 2H), 3.88–4.05 (m, 4H),
4.17–4.44 (m, 4H). ESI-MS (positive ion): m/z = 567.7
[M+H]+. HRMS (ESI): calcd for C25H42N8O7 [M+H]+

567.32492; found 567.32477.

4.4. General procedure for the Michael reaction

4.4.1. (R)-(+)-3-(2-Nitropropane-2-yl) cyclohexanone 5. 2-
Nitropropane (0.63 mmol) was added to a stirred solution
of 2-cyclohexen-1-one (0.5 mmol), trans-2,5-dimethylpiper-
azine (0.5 mmol), and peptide catalyst (2 mol %) in pre-
dried solvent (CHCl3, 4 mL), and the reaction mixture stir-
red at room temperature for 5 days. The reaction mixture
was worked up as described in the literature.24 The residues
were purified by chromatography on SiO2-column (hexane/
ethyl acetate) to afford the desired product 5. The enantio-
meric excess of the product was measured by 13C NMR of
corresponding ketal with (2R,3R)-2,3-butane diol.24 1H
NMR (300 MHz, CDCl3) d 2.48–2.34 (m, 3H), 2.31–2.21
(m, 1H), 2.19–2.08 (m, 2H), 1.85–1.76 (m, 1H), 1.71–1.53
(m, 1H), 1.58 (s, 3H), 1.57 (s, 3H), 1.48–1.34 (m, 1H).
13C NMR (150.8 MHz, CDCl3) d 208.9 (C@O), 90.6
(Cquat.), 46.5 (CH), 42.6 (CH2), 40.7 (CH2), 25.9 (CH2),
24.3 (CH2), 23.3 (CH3), 22.5 (CH3). ESI-MS (positive
ion): m/z 208.1 [M+Na]+.

4.5. General procedure for the aldol reaction

4.5.1. (4R)-(4-Nitrophenyl)-4-hydroxy-2-butanone 12. Pep-
tide catalyst (5–15 mol %) was added to a dry acetone/
DMSO (or DMF) (1:4) mixture and stirred for 20 min.
4-Nitrobenzaldehyde (0.05 M) was added and the result-
ing mixture stirred at room temperature under nitro-
gen. After completion of the reaction, the mixture was
worked up as described in the literature.28 1H NMR
(300 MHz, CDCl3) d 2.20 (s, 3H), 2.84 (m, 2H), 3.58 (br
s, 1H), 5.24 (m, 1H), 7.53 (d, 2H), 8.20 (d, 2H). HPLC
(Daicel Chiralpak AS): n-hexane/2-propanol = 75:25, flow
rate 1 mL/min, k = 254 nm: tR (major) = 18.84 min, tR

(minor) = 26.58 min.
Acknowledgment

The authors gratefully acknowledge the Deutsche Fors-
chungsgemeinschaft and Fonds der Chemischen Industrie
for generous financial support.
References

1. Review: Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58,
2481–2495.

2. Review: Groeger, H; Wilken, J.; Berkessel, A. In Simple
Amino Acids and Short-chain Peptides as Efficient Metal-free
Catalysts in Asymmetric Synthesis. Schmalz, H.-G., Wirth, T.,
Eds.; Organic Synthesis Highlights V; WILEY-VCH: Wein-
heim, 2003; pp 178–186.

3. Review: Tsogoeva, S. B. Lett. Org. Chem. 2005, 2, 208–213.
4. Copeland, G. T.; Jarvo, E. R.; Miller, S. J. J. Org. Chem.

1998, 63, 6784–6785.
5. Sculimbrene, B. R.; Morgan, A. J.; Miller, S. J. Chem.

Commun. 2003, 1781–1785.
6. Jarvo, E. R.; Copeland, G. T.; Papaioannou, N.; Bonitate-

bus, P. J., Jr.; Miller, S. J. J. Am. Chem. Soc. 1999, 121,
11638–11643.

7. Horstmann, T. E.; Guerin, D. J.; Miller, S. J. Angew. Chem.
2000, 112, 3781–3784; Angew. Chem., Int. Ed. 2000, 39, 3635–
3638.

8. Guerin, D. J.; Miller, S. J. J. Am. Chem. Soc. 2002, 124, 2134–
2136.

9. Tsogoeva, S. B.; Jagtap, S. B. Synlett 2004, 2624–2626.
10. Tsogoeva, S. B.; Jagtap, S. B.; Ardemasova, Z. A.; Kalikhe-

vich, V. N. Eur. J. Org. Chem. 2004, 4014–4019.
11. Tanaka, K.; Mori, A.; Inoue, S. J. Org. Chem. 1990, 55, 181–

185.
12. Iyer, M. S.; Gigstad, K. M.; Namdev, N. D.; Lipton, M.

J. Am. Chem. Soc. 1996, 118, 4910–4911.
13. Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem.

2000, 112, 1336–1338; Angew. Chem., Int. Ed. 2000, 39, 1279–
1281.

14. Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124,
10012–10014.

15. Sculimbrene, B. R.; Miller, S. J. J. Am. Chem. Soc. 2001, 123,
10125–10126.

16. Imbriglio, J. E.; Vasbinder, M. M.; Miller, S. J. Org. Lett.
2003, 5, 3741–3743.

17. (a) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi,
A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2003, 125,
5262–5263; (b) Tang, Z.; Jiang, F.; Cui, X.; Gong, L.-Z.; Mi,
A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. PNAS 2004, 101, 5755–5760;
(c) Tang, Z.; Yang, Z.-H.; Cun, L.-F.; Gong, L.-Z.; Mi,
A.-Q.; Jiang, Y.-Z. Org. Lett. 2004, 6, 2285–2287.

18. Martin, H. J.; List, B. Synlett 2003, 1901–1902.
19. Kofoed, J.; Nielsen, J.; Reymond, J.-L. Bioorg. Med. Chem.

Lett. 2003, 13, 2445–2447.
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